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Abstract: Autonomous driving is complex, requiring sophisticated 3D scene un-
derstanding, localization, mapping, and control. Rather than explicitly modelling
and fusing each of these components, we instead consider an end-to-end ap-
proach via reinforcement learning (RL). However, collecting exploration driving
data in the real world is impractical and dangerous. While training in simulation
and deploying visual sim-to-real techniques has worked well for robot manipu-
lation, deploying beyond controlled workspace viewpoints remains a challenge.
In this paper, we address this challenge by presenting Sim2Seg, a re-imagining
of RCAN [1] that crosses the visual reality gap for off-road autonomous driving,
without using any real-world data. This is done by learning to translate random-
ized simulation images into simulated segmentation and depth maps, subsequently
enabling real-world images to also be translated. This allows us to train an end-to-
end RL policy in simulation, and directly deploy in the real-world. Our approach,
which can be trained in 48 hours on 1 GPU, can perform equally as well as a
classical perception and control stack that took thousands of engineering hours
over several months to build. We hope this work motivates future end-to-end au-
tonomous driving research. Code and videos available on our project page.
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1 Introduction

Figure 1: Sim2Seg learns a mapping be-
tween randomized images and segmen-
tation maps for zero-shot transfer.

Simplifying large autonomous driving software stacks,
which are usually composed of 3D scene understanding,
localization, mapping, and control, is a promising goal.
While these stacks can indeed perform well in a range of
scenarios, they do suffer from error propagation through
each of the modules, and tend to require a large engineer-
ing overhead. However, attempting to solve autonomous
driving problem in a purely end-to-end manner, where
observations are mapped directly to actions, also has its
downfalls. For one, these methods are usually data in-
tensive, and in particular for reinforcement learning (RL),
collecting exploration driving data in the real world is im-
practical and dangerous.

To overcome the data burden, large-scale simulations can
be employed to collect experience from a large num-
ber of parallel agents. However, we then have to con-
sider the visual and dynamic discrepancies between the
simulation and reality. Sim-to-real transfer approaches,
such as domain adaptation [2, 1] and domain randomiza-
tion [3, 4, 5, 6] exist for this reason. These however, have
mostly been applied in tasks with a fixed camera view-
point, such as manipulation tasks where the camera usually points down towards a bin [2, 1] or
table [3], or faces a wall [4, 5].
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Unlike these robot manipulation setups, autonomous navigation with full-scale vehicles in off-road
settings are far less controlled, often featuring aspects such as drastically different lighting, glare,
dust, long visual horizons, and complex backgrounds. In addition, unlike in standard autonomous
street driving, the vehicle must traverse off-road terrains, which have less uniform dynamics and
may include natural obstacles such as bushes, rocks, bumps, and more, which may not be observed
during training.

In this paper, we investigate how similar sim-to-real techniques used for smaller scale robotic do-
mains, such as robot manipulation, can be scaled to the significantly more visually challenging do-
main of off-road autonomous driving of a large vehicle. To this end, we propose Sim2Seg, a sim-to-
real method designed with the challenges of off-terrain autonomous navigation in mind. Combined
with a deep RL policy, Sim2Seg is the first work to effectively employ primarily visual sim-to-real
transfer for off-road autonomous driving.

Contributions We highlight our contributions below:

• We improve the discriminator component within RCAN [1] by convolving the output segmen-
tation maps to produce feature maps that are then fed to a discriminator to evaluate.

• We explore suitable action modes that encourage safe trajectory proposals without diminishing
the model’s capability.

• We show that our trained RL policy can perform as well as a sophisticated, model-based au-
tonomous driving stack.

• We show the first primarily visual sim-to-real transfer method for end-to-end RL autonomous
driving in complex off-road terrains that requires no real world data.

2 Related Work

Model-based Autonomous Driving Most off-road autonomous driving approaches center around
scene understanding approaches. Due to the challenges of natural obstacles such as bushes, trees,
and rocks; uneven terrain; and various static and dynamic uncertainties [7], the robot must con-
stantly assess the traversability of the terrain. Geometry-based methods involve constructing a ter-
rain map [8, 9] from depth measurements from sensors such as LiDAR, stereo cameras, etc. This
terrain map is used to generate a traversability cost by performing stability analysis, using features
like surface normals, maximum or minimum height of the terrain, etc., which can be used by motion
planning and control algorithms to plan vehicle’s actions [10, 11, 12, 13]. Papadakis [14] provides a
survey of several other off-road driving algorithms. In lieu of these methods, we focus on end-to-end
autonomous driving directly from pixels, avoiding these engineering layers.

End-to-End Autonomous Driving End-to-end autonomous driving at large remains an unsolved
problem: most approaches have narrowed their scope to urban environments [15, 16], as it is most
relevant for everyday human transportation. In addition, most methods simplify the problem of
general navigation by assuming static environments [17] and real-world datasets [15], which is a
limiting factor for more difficult terrains and navigation tasks like off-road autonomous driving.

Since urban environments produce unique challenges of multi-agent interactions and following traf-
fic rules, many end-to-end approaches greatly simplify the environment to focus on navigation on
roads. For instance, Chu et al. [18] and Nair et al. [19] both reduce the environment to static, toy
car racing environments. While Kendall et al. [20] trains a visual RL policy end-to-end in simula-
tion, they focuses explicitly on lane-following in a static environment and requires real-world policy
rollouts for few-shot policy transfer. Offline real-world data has also been crucial to many methods.
Ram [21] trains end-to-end in CARLA [22] — an urban driving simulator, but to bridge the visual
sim-to-real gap, requires real-world data in order to enhance simulator images. VISTA [15] focuses
on street navigation and relies upon a data-driven simulator, which synthesizes new viewpoints of a
scene based on offline data, making it difficult to quickly simulate new scenes. Osinski et al. [17]
uses real-world images and ground-truth semantic segmentation maps to learn segmentations. We
instead focus on a goal-conditioned policy for the explicit task of off-road navigation and obstacle
avoidance, and zero-shot policy transfer to the real world via learning a shared representation from
a diverse set of high-fidelity simulations.

2



Sim-to-Real in the Visual Domain Perception forms the basis of many tasks, from smaller-scale
robotics tasks to large-scale vehicles. To ensure consistent perception across simulators and real-
world images, a popular technique used is domain randomization [23, 4, 16], in which input obser-
vations are randomized to prevent overfitting to simulator images, ensure adaptability to a variety of
conditions, and encourage extraction of meaningful features such as object shapes and locations.

In the case that real-world data is easily accessible, domain adaptation is a popular method used to
extract consistencies across the two domains. Pixel-level domain adaptation, for instance, improves
pixel-level consistencies by restylizing simulator images [24, 25]. For robotics tasks involving ob-
jects that are critical to the scene, additional losses are penalized: RetinaGAN ensures object con-
sistencies using a pretrained object detector [26], and RL-CycleGAN [27] penalizes differences in
Q-values. Feature-level domain adaptation learns shared features across both domains [28, 29, 30].
It is notable that many of these environments are based around grasping and other robotics tasks,
which have fixed camera viewpoints, controlled environments, and relatively easier data collection
processes in comparison with off-road vehicles.

The most direct analog of our approach is RCAN [1], which approaches visual sim-to-real translation
in robotic grasping via learning a shared RGB canonical space using a Pix2Pix model [31]. While
directly inspired by RCAN, our method has distinct differences, which we highlight: (1) RCAN
converts visual inputs to canonicalized RGB images. Sim2Seg converts visual inputs to one-hot
segmentation maps, which are a different, relatively lower dimensional, modality. (2) RCAN dis-
criminators take in paired RGB images. To improve discriminator stability, our discriminator takes
in learned features of input images and segmentation maps. (3) RCAN approaches robotic manip-
ulation tasks. Sim2Seg approaches autonomous driving in the much more difficult environment of
offroad environments, which presents additional challenges as described in Section 1.

3 Method

In this section, we detail our method, Sim2Seg, which is summarised in Figure 1. It consists of
two primary components: (1) inspired by RCAN [1], we train a Sim2Seg model that translate ran-
domized RGB images from simulation into a shared canonical form, which we define as a semantic
segmentation map. (2) We then train a goal-reaching policy within this canonical representation to
navigate in off-terrain environments. During inference, we use a frozen pretrained Sim2Seg model
to perform zero-shot transfer on real-world images.

3.1 Simulation

We create several simulation environments using the Unity engine. Unity fulfills several key desider-
ata, notably high-fidelity visual observations and dynamics, open-source vehicle components and
scenes [32], and the ability to apply custom domain randomization techniques. Unity also integrates
well with RL training with the Unity ML-Agents toolkit, which provides a Gym interface for train-
ing [33]. For our purposes, we further modify ML-Agents to support instance-level parallelism,
allowing us to train multiple agents per built executable.

To maximally train our policy to a variety of off-road environments and generate a diverse dataset
of simulator data, we select 3 different simulated scenes — dubbed Meadow [34], Landscapes [35],
and Canyon [36] — with semantically diverse visual environments. During training, the policy trains
simultaneously on all 3 environments, leveraging the most out of the simulation training phase and
ensuring adaptability to a variety of scenes.

3.2 Sim2Real via Sim2Seg

To bridge the visual gaps between simulators and real-world data, we use a Sim2Seg model to con-
vert randomized image domains into our chosen canonical form, a segmentation map consisting of
six classes: trees/bushes, ground, sky, rocks, road, and logs. Visualization colors can be found in
Appendix B. We believe this is useful for off-road vehicles because it simplifies the unnecessary de-
tails, textures, and colors of images and identifies different types of obstacles, which gives important
information on obstacles and areas to avoid (see Figure 2).
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Figure 2: To bridge the visual sim-to-real gap, we apply combinations of texture randomization,
camera position and intrinsic randomization, and lighting color and direction randomization to vary-
ing scenes in Unity, and learn mappings to ground truth segmentation maps.

Domain Randomization For data collection, we collect 200k pairs of paired RGB images, seg-
mentation maps, and depth data per environment, using a random policy. We apply domain ran-
domization to textures of all objects, lighting color and direction, camera field-of-view, and camera
position. For the best map to the canonical state, we train a Sim2Seg model per each environment
and a separate Sim2Seg model for the combined dataset. During training, we use each environment’s
Sim2Seg model, which avoids distribution shifts between the Unity environments. At real-world test
time, we also consider a Sim2Seg model trained on all environments to achieve optimal performance.

3.3 Sim2Seg Training

Following RCAN [1], we use conditional GANs (cGAN) with the U-Net Architecture [37, 31] to
translate pairs of randomized simulation images into their canonical segmentation map representa-
tion. During train time, we use paired simulation data (xs, xc,md,mo)j

N
j=1, where xs is a random-

ized RGB simulation image, xc is the canonicalized segmentation map, and md is the canonicalized
depth map, and mo the obstacle mask.

Unlike RCAN [1], we modify our objective to adapt to the task of autonomous driving. While
RCAN predicts the canonical image, segmentation map, and depth map, we simplify our problem to
predicting the segmentation map, which is simultaneously our canonical image; and the depth map,
which is used as an auxiliary.

Thus, to encourage visual similarity, we optimize the following objective:

Leq(G) = Exs,xc,md,mo
[λxleqx(Gx(xs), xc) + λdleqd(Gd(xs),mo ·md)]] (1)

where leqx is the cross-entropy loss, leqd the L1 loss, mo · md is the element-wise product, and
λx, λd the weighting of the losses. We denote Gx(xs) to be the segmentation output and Gd(xs) to
be the depth output of randomized simulation image xs.

Adversarial Objective We employ a discriminator D(x) which outputs the probability that the
RGB image and segmentation map is a pair from the simulation dataset. Because our canonical
output consists of probabilities for segmentation classes, we experimented with a few approaches to
use f to featurize the combination of RGB and segmentation map.

LGAN (G,D) = Exs,xc [logD(f(xs, xc)] + Exs [log(1−D(xs, f(Gx(xs))] (2)

Because our Sim2Seg model outputs segmentation class logits while the ground truth segmentation
maps are one-hot encodings, discriminating directly on image and segmentation pairs is immediately
trivial. In addition, because segmentation classes are discrete, we cannot sample a segmentation
class and pass the gradient back to the generator. To remedy this issue, we initially attempted two
two approaches: (1) sampling with gumbel-softmax [38] and (2) approximately the arg-max with
soft arg-max [39], both of which are differentiable. Despite this, GAN training remained unstable,
as discriminating between real and fake pairs was easy, likely due to noisy gumbel-softmax samples
and soft-argmax values in areas of uncertainty.

Thus, to circumvent these issues, we choose instead to separately convolve the simulation image and
segmentation maps to an equal number of channels to use as paired features for the discriminator
to evaluate [40]. This allows for gradient flow without leading to unrealistic segmentation maps.
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We find this to be effective for Sim2Seg, as it circumvents the problems of different modalities and
instead allows for stabler discrimination in feature space, and we present ablations in Appendix E.3.

3.4 End-to-end Driving with RL

Using Sim2Seg, we train a short-horizon navigation policy using RL; specifically, we consider a
goal-conditioned policy conditioned on visual and odometry data. Sim2Seg is inherently compat-
ible with any visual learner, but we choose to use TD3 [41] with image augmentation [42] as our
backbone RL algorithm. TD3 is an off-policy algorithm, and so enables goal-conditioning and rela-
belling in our training pipeline. We detail specific details about our architecture and hyperparameters
in the supplementary materials.

Observation Space We adjust the TD3 backbone policy with our augmented visual observations
and state information for our domain. Before inference, Sim2Seg translates the input RGB image
ot ∈ R(3,256,256) into a one-hot, C-class segmentation map ct ∈ R(C,256,256). Additionally, we
condition on egocentric past trajectory τp ∈ R10,3, the current 2D state sa ∈ R2, and the goal state
sg ∈ R2. The encoded segmentation map and state information are flattened and concatenated to
achieve a final representation.

Action Space We parameterize the policy’s actor as an LSTM which outputs a series of 5 action
tuples, each consisting of a steering angle θ ∈ [π4 ,−

π
4 ], and acceleration α ∈ [0, 1]). The policy

then performs a temporal rollout of the actions to form a trajectory, which is consumed by a lower-
level controller for vehicle commands. This parameterization comes with several benefits; proposing
rollouts instead of vehicle torque commands mitigates the dynamics sim-to-real gap. Furthermore,
proposing multiple continuous actions allows the policy to propose waypoints and consider more
coherent short-term plans, while giving a notion of safety when executing in the real world. We
perform an analysis of different action parameterizations in Appendix E.2.

Reward Function We design a simple reward function to best achieve goals while producing safe
behaviors, notably obstacle avoidance:

rt(sg, sa, a) = λgrg(sg, sa) + λuru(sg, sa, a) + λsrs(a) + λcrc(s, a, s
′) (3)

where rg is a goal-conditioned sparse reward, ru is an upright reward intended to incentivize smooth
terrains (i.e. less rocky and flatter terrains), rs is a steer penalty intended to discourage bang-bang
control, and rc is a collision penalty:

rg(sg, sa) =

{
100 if‖sg − sa‖2 < 2

−1 otherwise
rc(s, a, s

′) =

{
−1 if collision
0 otherwise

ru(sg, sa, a) = − |θ|
180

rs(aθ,α) = −‖θ‖2

where θ is the max of the roll and pitch angles between the vehicle body and world frames, and
collisions are detected via Unity. To supplement training, we additionally leverage Hindsight Expe-
rience Replay, [43]: by relabeling sampled trajectories (τ, sa, sg) with a goal achieved later in the
same trajectory (τ, sa, s

′
a) during training, we obtain more signal from the sparse reward rg .

3.5 Real-world Vehicle Integration

Figure 3: Polaris hardware with sensor
suite. a) raw image, (b) cropped image
as an input to Sim2Seg (c) segmented
result using on-board computer.

For real-world evaluation, we use a Polaris S4 1000 Turbo
RZR equipped with a variety of perception sensors, in-
cluding an inertial measurement unit (IMU), stereo cam-
era pairs, and LiDARs (see Figure 3). Note that we only
use a monocular RGB camera when deploying. The Po-
laris also includes computing resources and a ”drive by
wire” system to autonomously control the vehicle (ac-
celerate, change gears, brake, steer). NeBula [44] has
been integrated with the vehicle and utilizes a ROS stack
with planners for varying goal horizons. To integrate our
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model with the Nebula autonomy system, we further test in the ARL simulator, a photorealistic
simulator of the Meadow environment already integrated with the ROS stack.

During real-world deployment, we plan in an iterative closed loop at 10 Hz, executing actions until
the policy receives sufficient information. The policy stores a buffer of received messages, and only
executes when timestamps are synchronized within 100ms. Output trajectories are consumed by a
PID controller, which translates trajectories into low level vehicle commands.

4 Experimental Setup

Figure 4: Real-world off-road evaluation data
gathered by our platform at a) Helendale, Mojave
Dessert and b) Arroyo Seco Trails, Altadena

Preliminary: Classical Baseline We con-
struct the classical baseline by leveraging the
the Nebula software stack [44]. Our spe-
cific implementation uses localization estimates
from a LiDAR’s inertial odometry to fuse depth
scans temporally which are used to estimate
traversability cost using a settling-based geo-
metric analysis [45]. This traversability map is
used by a kinodynamic motion planner [46] to
generate collision-free trajectories that are fol-
lowed by a lower level PID-based tracking controller.

Offline Sim-to-Real Transfer Evaluation To evaluate our policy’s ability to perform visual sim-
to-real transfer, we evaluate our policy using offline rosbag datasets of real-world, manual rollouts
with the Polaris vehicle. Given rosbags of vehicle interactions, we first construct a dataset D :=
{o, sg, τ∗p ; τ∗}, where o is the observation at t = 0, sg is the real achieved goal at some t > 3
seconds, τ∗p is the past trajectory up to t = 0, and τ∗ is the vehicle’s real-world trajectory from
t = 0. To calculate τ∗ and τ∗p , we transform the recorded odometry into the vehicle’s egocentric
frame. We are then able to perform the model’s full inference pipeline using o, sg , and τp to produce
a predicted trajectory τ . Following this method, we construct two different real-world datasets
from environments semantically and visually different from the set of training environments, which
features the vehicle navigating winding trails, rocks, and vegetation (see Figure 4).

Online Sim-to-Real Transfer Evaluation We also perform qualitative evaluation of closed-loop
control with our policy fully in the real world using the system described in Section 3.5 in the Arroyo
environment.

5 Experimental Results

We seek to answer two primary questions: (1) Is Sim2Seg able to efficiently reach goals and perform
obstacle avoidance during zero-shot transfer? (2) What factors are most necessary for Sim2Seg’s
performance?

5.1 Goal Reaching and Obstacle Avoidance

Figure 5: Timelapse of experimental demon-
stration of zero-shot transfer of goal follow-
ing while avoiding obstacles.

We evaluate the policy’s capacity for obstacle nav-
igation through comparison against real world roll-
out τ∗, under the assumption that τ∗ is an efficient
trajectory to reach sg while avoiding obstacles. Fol-
lowing the offline evaluation setup described in Sec-
tion 4, we define efficient as (1) reaching sg in a
timely manner (sg is the offset in t = 3 seconds),
and (2) avoiding obstacles (the human driver pur-
posefully avoids collisions).

We compare both the normalized L2 distance (denoted as L2) between the requested goal and the
trajectory endpoint, and the angle difference between 10 evenly sampled points from τ∗ and τ
(denoted as GT) We also include absolute trajectory error (denoted as ATE), a classical measure
of trajectory alignment. Additionally, to account for the possibility that τ reaches the goal more
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directly than τ∗, we also introduce GTG, which is the GT metric described above between the
shortest distance to sg and τ . A lower L2 and GTG indicates that the policy outputs trajectories
that reach the goal (goal reaching); lower GT and ATE indicates that the policy aligns well with the
human trajectory (obstacle avoidance).

To understand the gains provided by our method, we consider Sim2Seg’s performance against sev-
eral baselines detailed below. The results are listed in Table 1.

• Random: An untrained policy, i.e., random actions.
• Domain Randomization: We train an identical policy without the shared representation space

learned through Sim2Seg, instead leveraging only our domain randomization methods.
• Classical: We consider an existing classical autonomous stack as described in Section 3.5.

Data Method GT ↓ ATE ↓ GTG ↓ L2 ↓

Arroyo

Random 0.354 ± 0.002 1.693 ± 0.411 0.343 ± 0.005 0.691 ± 0.003

DR 0.292 ± 0.026 0.945 ± 0.209 0.280 ± 0.022 0.452 ± 0.008

Classical* 0.070 0.812 0.087 0.653
Sim2Seg (ours) 0.147 ± 0.027 0.471 ± 0.012 0.163 ± 0.019 0.287 ± 0.024

Helendale

Random 0.318 ± 0.003 2.128 ± 0.029 0.350 ± 0.003 0.751 ± 0.005

DR 0.305 ± 0.039 1.546 ± 0.374 0.238 ± 0.042 0.501 ± 0.028

Classical* 0.106 2.498 0.200 0.868
Sim2Seg (ours) 0.158 ± 0.007 0.747 ± 0.381 0.210 ± 0.013 0.383 ± 0.026

Table 1: Offline evaluation metrics of our method against a broad set of baselines, including do-
main randomization (DR) and random actions (Random). Standard deviation shown across 5 seeds.
*Note, Classical is not an RL solution, and so there are no seeds. Classical takes in LiDAR, whereas
our other methods only takes in image and odometry inputs.

Furthermore, we demonstrate zero-shot transfer by deploying the algorithm in a real-world off-road
environment on a passenger-size vehicle shown in Figure 5. In the included example, the policy
identifies the rock as an obstacle, and creates a trajectory to navigate around it. See supplementary
material for videos.

We include additional ablations on the incorporation of real-world data in Appendix E.1 and the
segmentation model in Appendix E.3.

Figure 6: Qualitative zero-shot transfer results of our final Sim2Seg model. Our simulator envi-
ronments range from a grassy meadow to a rocky canyon environment, yet with sufficient domain-
randomization, we can achieve strong performance in the unseen and quite different real-world
environments. Row 2 consists of observations we consider particularly challenging. Sim2Seg is
able to generalize to harsh lighting and extreme shadows.

In this paper, we have investigated transferring end-to-end off-road autonomous driving policies
from simulation to reality. To accomplish this, we have presented Sim2Seg, which converts ran-
domized simulated RGB images into segmentation masks, and subsequently enables real-world im-
ages to also be converted. Given that our driving policy is trained in these canonical segmentation
environments, it is possible to run policies trained in simulation directly in the real world. When
evaluating on real-world data, we are able to perform equally as well as a classical perception and
control stack that took thousands of engineering hours over several months to build.

6 Conclusion and Limitations
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Figure 7: Sample rollouts from
each of the considered action
modes in E.2, with the visual
observation pictured on the left.
Despite there being few obsta-
cles in the scene, the short-
horizon policy proposes a trajec-
tory far from the requested goal.

Limitations Improving the quality of the Sim2Seg model is
a key priority; qualitative analysis of segmentation maps shows
difficulty with shadows (which may be perceived as new objects)
and low-contrast scenes (such as the small shrubs depicted in
Figure 6). We hope that such shortcomings can be addressed
by introducing stronger shadow randomization techniques, and
generally increasing the number of environments trained on.

Currently, Sim2Seg’s policy is trained on horizons of 20 meters
in length, and thus is only effective at this range. An effective
horizon on the range of 50 meters or more would likely be much
more practical, especially when navigating at higher speeds. Our
policy currently is capable of avoiding obstacles in short range as
demonstrated in Section 5.1; however, long horizon reasoning,
such as needing to traverse around a forest to reach a goal, has
not been tested. Training with temporally and spatially longer
horizons inherently introduces more complexity to RL; this is an
active area of research for us.

One particular area of interest is trajectory proposals in terms
of waypoints. Waypoint proposals would allow us to explore
other methods such as Bezier curve parameterizations and dis-
crete trajectory libraries [47], and would provide further proof
that Sim2Seg can generalize to different policy architectures.
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A Videos + Code

Videos of Sim2Seg’s zero-shot transfer to real-world can be found at https://sites.google.
com/view/sim2segcorl2022/home. Our official implementation of Sim2Seg can be found at
https://github.com/rll-research/sim2seg.

B Sim2Seg Architecture and Training

We base our Sim2Seg architecture off of the CycleGAN and pix2pix architectures [37, 31]. We
modify the depth and output of the network, depicted in detail in Figure 8. For instance, we output
C = 6 for 6 segmentation classes without depth and C = 7 for an additional depth prediction
channel.

To featurize the RGB input image and the outputted segmentation map for our discriminator, we
featurize each individually. We convolve to 20 channels, with kernel size 3, stride 1, and padding
1; apply ReLU; and convolve to 10 channels, with kernel size 3, stride 1, and padding 1. Then, we
apply the default PatchGAN discriminator from [37].

To train our Sim2Seg model, we use λx = 1, λd = 10. During train time, we use a discriminator
learn rate of 0.00005, updates every 8 steps, and skipped updates past a threshold of 0.3.

For our segmentation map visualizations, we choose these corresponding colors per class: Ground
is blue, trees/bushes are green, sky is black, rocks are red, road is white, logs are purple.

C Policy Architecture and Training

Our policy builds off of the codebase for [42]. Our A=1 policy uses the exact policy architecture
in [42], and the LSTM policy consists of an LSTM with a hidden dimension of 512. For the LSTM
policy, we use a neural net with one hidden dimension of 256 to convert the LSTM hidden state to
an action of dimension 2.

To encode our segmentation inputs, we use a neural network that consists of a 3x3 convolution with
stride 2; 3 additional 3x3 convolutions with stride 1; and ReLU activations after each convolution.

During training, we use a hindsight relabelling ratio of 0.8, discount rate of 0.99, learning rate of
0.0001, and critic target τ of 0.01.

D Trajectory Rollouts

Below we detail pseudocode for transforming the LSTM actor’s tuple of (θ, α) into a trajectory.

Algorithm 1 get traj
Require: l, τp, (θ, α)1:l
h← 0
s← ‖τp[−1]− τp[−2]‖2
τ ← np.zeros(l, 3)
i← 0
while i < l − 1 do

s← s+ αi
v = [s, 0]
h← np.clip(h+ ∆θ ∗ sign(θi),−|θi|, |θi|) . Increment the heading.
τ [i + 1]← τ [i] +Rhv . Rotate the velocity vector by h via rotation matrix.
i = i+ 1

end while

E Ablations

We include various ablations and present the results in Table 2.

12

https://sites.google.com/view/sim2segcorl2022/home
https://sites.google.com/view/sim2segcorl2022/home
https://github.com/rll-research/sim2seg


Figure 8: Sim2Seg Architecture. We include the number of output channels per each convolution.
During the downsampling phase, Leaky ReLUs (slope 0.2) and Batchnorm is applied. During the
upsampling phase, ReLU and batch-normalization are applied. An additional depth prediction is
produced when penalizing the depth auxiliary loss.

Ablation GT ↓ ATE ↓ GTG ↓ L2 ↓
Sim2Seg Baseline 0.147 ± 0.027 0.471 ± 0.012 0.163 ± 0.019 0.287 ± 0.024

1 Sim Env 0.189 ± 0.020 0.445 ± 0.077 0.174 ± 0.021 0.270 ± 0.068

Action = 1 Step 0.309 ± 0.135 0.910 ± 0.213 0.234 ± 0.060 0.388 ± 0.076

Action = 10 Steps 0.158 ± 0.045 0.489 ± 0.216 0.180 ± 0.046 0.314 ± 0.058

w/o Disc. Features (WGAN) 0.202 ± 0.025 0.490 ± 0.052 0.202 ± 0.012 0.315 ± 0.034

w/o Depth 0.174 ± 0.036 0.588 ± 0.151 0.181 ± 0.038 0.330 ± 0.047

RCAN (Pix2Pix) 0.232 ± 0.055 0.737 ± 0.224 0.222 ± 0.055 0.378 ± 0.075

400 Real World Transitions 0.149 ± 0.030 0.489 ± 0.057 0.142 ± 0.026 0.266 ± 0.153

1200 Real World Transitions 0.146 ± 0.040 0.448 ± 0.156 0.141 ± 0.041 0.432 ± 0.060

Table 2: We include ablations evaluated on Arroyo. We note that in particular, incorporating real-
world data is a scalable method to improve policy performance. Standard deviation shown across 5
seeds.

E.1 Ablation: Simulator and Real-World Data

We additionally compare the performance of our model against the sources of training data. Under
’1 Sim Env’, we train only on one environment (Meadow), instead of all three simulator environ-
ments. Under ’Real-World’, we additionally introduce a limited offline dataset of transitions, in-
spired by [1]. To construct this dataset, we invert the temporal rollout described in Section 3.4 on
rosbags consisting of trajectories in a separate area of the Arroyo environment to obtain transitions
{o, a, sg, τ∗p ; }, and add these to the replay buffer. During training, we sample 50% of our batch
from the real-world transitions. Notably, this setup is amenable to using large amounts of offline,
non-segmented data; RGB images are still segmented zero-shot according to a frozen pretrained
Sim2Seg model. We experiment with different amounts of real-world data, including 0, 400, and
1200 transitions. Reducing the number of simulation environments doesn’t seem to significantly
harm model performance; we hypothesize that this could be in large part due to Meadow and Ar-
royo’s similarities as relatively flat landscapes. However, introducing even as little as 400 transitions
produces improved results and allows for even smoother transfer to the real world.

13



E.2 Ablation: Trajectory Parameterization

We additionally experiment with the number of actionsA our policy autoregressively outputs. A = 1
means the policy only takes one action at time; A = 5 means the policy, parameterized by an LSTM,
generates 5 actions and takes 5 environment steps at a time. We evaluate the performance of a short-
horizon policy (A = 1), medium-horizon policy (A = 5), and a long-horizon policy (A = 10). Our
short-horizon policy performs noticeably worse, whereas our medium and short-horizon policies
perform similarly well. This seems to suggest that learning longer-range behaviors can be important.

E.3 Ablation: Sim2Seg Model

We compare our policy trained with our baseline Sim2Seg model with policies trained on ablated
versions in Table 2.

• Sim2Seg without Feature-Based Discriminator Setup: Instead of training our discriminator
on featurized images and segmentation maps, the discriminator takes in pairs of RGB images
and one-hot segmentation maps. We sample differentiably with Gumbel-Softmax. For stability,
we apply the WGAN-GP [48] penalty.

• Sim2Seg without Depth Supervision: Depth may provide useful learning signals to the
Sim2Seg model, encouraging representations specifically to better recognize occluding obsta-
cles such as trees and rocks, which may be useful for the policy. We compare our our base-
line policy trained with a depth-aware Sim2Seg model to a policy trained on a depth-agnostic
Sim2Seg model to evaluate if our depth auxiliary loss is a useful part of our pipeline.

• RCAN: Instead of using a Sim2Seg model, we use RCAN [1] to convert RGB input images to
canonical RGB segmentation maps. We define a unique color for each class, such as red for rock
and blue for terrain.

While there are many other reasons to discriminate on convolved features, we also find empirically
that using discriminator features improves performance. Next, we find that the auxiliary depth-
loss also improves policy performance, which is expected, as the depth loss improves Sim2Seg
results. Finally, instead of using Sim2Seg, we compare with using RCAN, in which we convert
from randomized image to canonical image. Not only are canonical predictions drastically worse
due to the complicated nature of the data, but this also degrades policy performance.
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