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Fig. 1: Given a task instruction and the initial positions of any set of points in an image frame, our Any-point Trajectory
Model (ATM) can predict the future trajectories of these points conditioned on the task. After training the model on a video
dataset, the predicted trajectories serve as effective guidance for learning visuomotor policies for a set of language-conditioned
manipulation tasks.

Abstract—Learning from demonstration is a powerful method
for teaching robots new skills, and having more demonstration
data often improves policy learning. However, the high cost of
collecting demonstration data is a significant bottleneck. Videos,
as a rich data source, contain knowledge of behaviors, physics,
and semantics, but extracting control-specific information from
them is challenging due to the lack of action labels. In this work,
we introduce a novel framework, Any-point Trajectory Modeling
(ATM), that utilizes video demonstrations by pre-training a
trajectory model to predict future trajectories of arbitrary
points within a video frame. Once trained, these trajectories
provide detailed control guidance, enabling the learning of robust
visuomotor policies with minimal action-labeled data. Across over
130 language-conditioned tasks we evaluated in both simulation
and the real world, ATM outperforms strong video pre-training

*First three authors contributed equally: Chuan Wen led the implementation
and experiments. Xingyu Lin came up with the idea, supervised the technical
development, and contributed to model debugging. John So implemented the
Robot-to-robot transfer experiments and UniPi baselines.

baselines by 80% on average. Furthermore, we show effective
transfer learning of manipulation skills from human videos and
videos from a different robot morphology. Visualizations and
code are available at: https://xingyu-lin.github.io/atm.

I. INTRODUCTION

Computer vision and natural language understanding have
recently made significant advances [20, 7], largely due to the
availability of large datasets. Similarly, in robotics, scaling
up human demonstration data has been key for learning
new skills [6, 32, 13], with a clear trend of performance
improvement with larger datasets [27, 6]. However, human
demonstrations, typically action-labeled trajectories collected
via teleoperation devices [52, 49], are time-consuming and
labor-intensive to collect. For instance, collecting 130K tra-
jectories in [6] took 17 months, making data collection a major
bottleneck in robot learning.
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Videos contain knowledge about behaviors, physics, and
semantics, presenting an alternative data source. However,
the lack of action labels makes utilization of video data in
policy learning difficult. Previous works have addressed this
by using self-supervised objectives for video pre-training to
learn a feature representation of the observation for policy
learning [41, 31, 39]. However, a feature representation only
describes the state at the current time step, largely neglecting
the transition dynamics that predicts future states. To explicitly
model the transition dynamics, prior works have developed
video prediction models that predict future image frames
from current ones [11, 51, 12]. However, learning a video
prediction model for control introduces two issues. Firstly, the
task of video prediction avoids any abstraction by modeling
changes to every pixel, coupling the physical motion with
visual appearances such as texture, and lighting. This coupling
makes modeling difficult, often resulting in hallucinations and
unrealistic future predictions [11]. Secondly, these models are
computationally demanding in both training and inferencing.
With limited computational resources, performance signifi-
cantly declines. Moreover, the high inference cost compels
these models to adopt open-loop execution [11, 5], which tends
to result in less robust policies.

In this paper, we propose a novel and structured repre-
sentation to bridge video pre-training and policy learning.
We first represent each state as a set of points in a video
frame. To model the temporal structure in videos, we learn an
Any-point Trajectory Model (ATM) that takes the positions
of the points in the current frame as input and outputs
their future trajectories. We predict these trajectories in the
camera coordinate frame to minimize the assumptions on
calibrated cameras. These 2D point trajectories correspond to
trajectories of particles in the 3D space and are a universal
representation of the motions that can transfer to different
domains and tasks. Contrasting with the video prediction
approach of tracking changes in pixel intensity, our particle-
based trajectory modeling offers a more faithful abstraction
of the physical dynamics, naturally incorporating inductive
biases like object permanence. We first pre-train the trajec-
tory model on actionless video datasets. After pre-training,
the predicted trajectories serve as detailed guidance for the
policies, functioning like subgoals. We then train trajectory-
guided policies using only a minimal amount of action-labeled
demonstration data. For training the ATMs, we generate self-
supervised training data by leveraging recent advancements
in vision models for accurate point tracking [18]. Across
over 130 language-conditioned tasks we evaluated in both
simulation and the real world, ATM significantly surpasses
various strong baselines in video pre-training, achieving an
average success rate of 63% compared to the highest success
rate of 37% by previous methods, marking an improvement
of over 80%. Additionally, we demonstrate that our method
facilitates effective transfer learning from human videos and
videos of a robot with a different morphology. We summarize
our main contributions below:

1) We propose an Any-point Trajectory Model, a simple
and novel framework that bridges video pre-training to
policy learning, leveraging the structured representation
of particle trajectories.

2) Through extensive experiments on simulated bench-
marks and in the real world, we demonstrate that our
method can effectively utilize video data in pre-training
and significantly outperform various video pre-training
baselines in an imitation learning setting.

3) We demonstrate effective learning from human videos.

II. RELATED WORK

State representation for control. In learning end-to-end
visuomotor policies, the policy is typically parameterized as
a neural network that takes image observation as the input
representation [36, 6, 46]. Due to the lack of inductive bias,
these approaches require training on a large number of demon-
stration trajectories, which is expensive to collect. On the
other hand, different structured representations are proposed
to improve the data efficiency, such as key points [34, 29],
mesh [23, 17], or neural 3D representation [22, 35]. However,
prior structures often limit the policy to specific tasks. In
contrast, we propose to utilize future trajectories of arbitrary
points in the image as additional input to the policy, mak-
ing minimal assumptions about the task and environment.
We demonstrate its wide application to a set of over 130
language-conditioned manipulation tasks. In navigation and
locomotion, it is common to construct policies that are guided
by the future trajectories of the robot [1, 33]. In manipulation,
some works have explored flow-based guidance [14, 38, 15].
However, prior works only track task-specific points, such as
the end-effector of the robot, or the human hand. Instead, our
approach works with arbitrary points, including points on the
objects, thus providing richer information in the more general
settings. Finally, Vecerik et al. [45] proposes to utilize any-
point tracking for few-shot policy learning. This approach
does not learn trajectory models from data, but instead mainly
uses the tracker to perform visual servoing during test time.
This design choice requires more instrumentation, such as
separating the task into multiple stages, predicting the goal
locations of the points for each stage, and running the tracker
during inference time. In contrast, we present a much simpler
framework, enabling application in more diverse settings.
Video pre-training for control. Videos contain rich infor-
mation about behaviors and dynamics, which can help policy
learning. However, video pre-training remains challenging due
to the lack of action labels. One line of works first learns
an inverse dynamics model that predicts the action from two
adjacent frames and then labels the videos with pseudo ac-
tions [37, 3, 44]. However, the inverse dynamics model is often
trained on a limited action-labeled dataset and does not gener-
alize well, especially for continuous actions. Prior works have
also explored pre-train a feature representation using various
self-supervised objectives [40, 31, 26], but the representation
alone does not retain the temporal information in videos. More
recently, learning video prediction as pre-training has shown



promising results [11, 21, 4, 51, 12]. During policy learning,
a video prediction model is used to generate future subgoals
and then a goal-conditioned policy can be learned to reach
the sub-goal. However, video prediction models often result in
hallucinations and unrealistic physical motions. Furthermore,
video models require extensive computation, which is an
issue, especially during inference time. In contrast, our method
models the trajectories of the points, naturally incorporating
inductive bias like object permanence while requiring much
less computation. This enables our trajectory models to be
run closed-loop during policy execution. Furthermore, the
trajectories provide dense guidance to the policy as a motion
prior.
Learning from Human Videos. Of particular interest, numer-
ous prior works have proposed learning from the rich source of
human videos [50, 42, 30, 2, 43]. However, these works often
explicitly extract the hand pose or contact regions from the
human videos, thereby losing information about the dynamics
of the remaining objects. In contrast, our method models the
trajectories of arbitrary points and can learn from both human
videos and videos of a different robot.

III. PRELIMINARY

In this paper, we aim to learn robust control policies from
a small set of action-labeled demonstration trajectories. Our
central goal is to leverage the more scalable, unlabeled videos
as a data source for pre-training.
Imitation from demos and videos. To begin with, we denote
the action-free video dataset as To = {(τ (i)o , ℓ(i))}No

i=1, where
ℓ(i) is the language instruction for the ith episode and τ

(i)
o =

{o(i)t }Tt=1 denotes the observation-only trajectory consisting of
camera images. Similarly, we denote the demonstration dataset
as Ta = {(τ (i)a , ℓ(i))}Na

i=1, where τ
(i)
a = {o(i)t , a

(i)
t }Tt=1 is the

action-labeled trajectory. During imitation learning, our goal
is to learn a policy πθ, parameterized by θ to mimic the expert
behavior by the following behavioral cloning objective:

π∗
θ = argmin

θ
E(ot,at,ℓ)∼Ta

[
L
(
πθ(ot, ℓ), at

)]
, (1)

where L is the loss function, which could be Mean Squared
Error (MSE) or cross-entropy loss.
Tracking Any Point (TAP). The recent advancements in
video tracking [9, 10, 47] enable us to track the trajectory
of each point in video frames without external supervision. In
this paper, we utilize the off-the-shelf tracker proposed in [18].
Formally, given a sequence of images from a video o1, ..., oT ,
any one of the time steps t̄ ∈ [1, T ], and a set of points in that
frame {pt̄,k}Kk=1, where pt̄,k = (x, y) is the point coordinate
in the camera frame, the task of tracking is to predict the 2D
camera-frame coordinates of the corresponding points in every
frame pt,k where t = 1 . . . T . In this paper, we use the terms
trajectory and track interchangeably to refer to a sequence
of 2D coordinates of any point, denoted as (p1, . . . , pT ). We
only model the 2D trajectories in the camera frame so that we
do not have to make additional assumptions about multi-view
cameras, or the availability of depth, allowing future scaling to

more diverse video datasets. The tracker additionally predicts
a binary visibility value vt,k denoting whether the point is
occluded at step t.

IV. METHOD

Videos contain a great deal of prior information about the
world, capturing physical dynamics, human behaviors, and
semantics that are invaluable for policy learning. Beyond just
learning representations from videos [40, 31, 26], we aim to
learn a model from videos to predict future states for guiding
a control policy. In this way, we can essentially decompose the
visuomotor policy learning challenge into two parts. The first
part is learning what to do next by generating future states as
concrete sub-goals, which is learned purely from videos. The
second part is learning to predict control actions to follow the
sub-goals, which require much less data to train compared to
learning policies end-to-end. With sufficient video pre-training,
we will be able to learn generalizable policies even from
limited action-labeled trajectories. Prior works [11, 21, 5] have
predominantly relied on pixel-level future frame prediction
as video pre-training. While video prediction is resource-
intensive during both training and inference stages, its focus on
reconstructing pixel-level details, which are often extraneous
to policy learning, can adversely affect the efficiency of
subsequent policy learning.

We propose Any-point Trajectory Modeling (ATM). As
illustrated in Figure 2, ATM learns to predict future point
trajectories in a video frame as the pre-training, then uses the
predicted trajectories to guide policy learning. Our proposed
method will be comprehensively detailed in this section: In
Sec. IV-A, we first describe how to learn a point trajectory
prediction model from an action-free video dataset To. Then
in Sec. IV-B, we outline how we utilize the pre-trained track
prediction model to learn a track-guided policy from a limited
action-labeled trajectory datasets Ta.

A. Trajectory Modeling from Video Datasets

Our goal is to pre-train a model from videos that forecasts
the future point trajectories in a frame. More formally, given
an image observation ot at timestep t, any set of 2D query
points on the image frame pt = {pt,k}Kk=1, and a language
instruction ℓ, we learn a model pt:t+H = τθ(ot,pt, ℓ) that
predicts the coordinates of the query points in the future
H steps in the camera frame, where pt:t+H ∈ RH×K×2.
To model the tracks, we propose a track transformer and
illustrate the architecture in Figure 2 (a).

a) Self-supervised Track Annotation.: Initially, we gen-
erate point trajectories from action-free videos for trajectory
modeling pre-training. As described in Sec. III, we employ
a vision tracker to pre-process videos and generate a tracking
dataset. For each video, we randomly sample a time step t̄ and
then randomly sample points on this frame and generate their
tracks by running the tracker. However, for a static camera,
most of the points that are sampled randomly will be in the
background, thus providing little information when training
our track transformer. To address this, we adopt a heuristic
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Fig. 2: Overview of our framework. (a) In the first stage, given an action-free video dataset, we first sample 2D points on one
video frame and track their trajectories throughout the video using a pre-trained tracker. We then train a track transformer to
predict future point trajectories given the current image observation, the language instruction, and the initial positions of the
points. For the transformer input, we replace the future point positions with masked values. (2) In the second stage, we learn
a track-guided policy to predict the control actions. Guidance from the predicted track enables us to learn robust policies from
only a few action-labeled demonstrations.

solution to filter out these static points: we first sample a
grid of n × n on frame t̄ and track the grid of points
across the whole of the video to obtain an initial set of tracks
τ ∈ Rn2×T×2. Subsequently, we filter points that have not
moved during the video by thresholding the variance of the
point positions over time. In the final step, we resample points
around the filtered locations and finally generate their positions
using the tracker.

b) Multimodal Track Modeling.: We formalize the future
forecasting problem as a multi-modal masked prediction prob-
lem: we aim to predict the future positions of each point, con-
ditioned on its current position, the current image observation,
and a language instruction of the task. We first encode different
modalities into a shared embedding space, each represented
by a few tokens. For the tracks, we mask out the future
positions of all points before encoding and then separately
encode each point into one token. For the language instruction,
we use a pre-trained BERT [8] encoder. For the images,
we split them into image patches and randomly masked out
50% of the patches. We then pass all tokens through a large
transformer model. Finally, we decode the track tokens into
future trajectories of the corresponding points. Additionally,
we reconstruct the image patches from the corresponding
tokens following He et al. [16] as an auxiliary task, which
we find useful for more complex tasks. Through this pre-
training process, our track transformer learns the motion prior
of particles within the video frames.

B. Track-guided Policy Learning

After training a track transformer to predict future tracks
based on observations, we can then learn policies guided by
these predicted trajectories.

a) Arbitrary Points Tracking.: During track transformer
pre-training, we can filter tracks without large movements.
However, using this heuristic requires knowing the future
positions of each point, which can be expensive to compute
during policy inference. Instead, we find it sufficient to simply
use a fixed set of 32 points on a grid for the policy. This
sampling method avoids the potential complexities of learning
key points or finding points to track [45] and works well
in practice. ATM is permutation invariant to the input set of
points, and we also find ATM to be robust to the distribution
of the points, allowing us to use a different point sampling
scheme from training for policy learning.

b) Track-guided Policy Learning.: A track-guided policy
π(at|ot,pt:t+H) takes input the current observation ot and the
predicted tracks pt:t+H and predict the actions. A simplified
illustration of our policy architecture is shown in Figure 3.
Our transformer policy architecture follows the architecture
in prior works [25, 19]. Although the predicted tracks alone
already provide rich information to predict the actions, we still
incorporate contextual image observations into our policy so
that no information is lost, as suggested in prior works [24].
We incorporate the track tokens both before and after fusion
with the image tokens (early fusion and late fusion) to ensure
that the guiding information from tracks can be effectively
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Fig. 3: A visual illustration of the architecture of the track-
guided policy. Given the current observation and the predicted
tracks from the frozen pre-trained track transformer, we train
a track-guided policy from a limited demonstration dataset.

integrated. Surprisingly, as the tracks already provide the fine-
grained subgoals, we find that the policy no longer needs lan-
guage instruction at this stage as task specification. Essentially,
the provided tracks have reduced the difficult policy learning
problems into a much easier sub-goal following problems,
reducing the policy into an inverse dynamics model. Our track-
guided policy is trained with MSE loss. A detailed architecture
diagram and hyperparameters are available in the appendix.

V. EXPERIMENTS

We perform experiments to answer the following questions:
• How does ATM compare with state-of-the-art video pre-

training baselines in learning from action-free videos?
• Can ATM be used for learning from video data that are

out of the distribution of demonstration data?
• How do various design choices of ATM affect the per-

formance?
Our experiments are split into three sections. In Sec. V-A, we
compare ATM with video pre-training baselines on over 130
language-conditioned manipulation tasks in simulation and
in the real world. In Sec. V-B, we show that ATM enables
effective learning from human videos. Finally, we present
ablation results in Sec. V-C.

A. Video Pre-training for Imitation Learning

Environments. We compare with baselines on over
one hundred language-conditioned manipulation tasks in the
LIBERO benchmark [25]. The benchmark is subdivided into
five suites, LIBERO-Spatial, LIBERO-Object, LIBERO-Goal,
LIBERO-Long, and LIBERO-90. Each suite has 10 tasks,
except LIBERO-90 which contains 90 tasks. Each task comes
with expert human demonstrations. LIBERO-Spatial contains
tasks with the same objects but different layouts; LIBERO-
Object has tasks with the same layouts but different objects;
LIBERO-Goal has tasks with the same object categories

and spatial layouts, but different goals; LIBERO-Long has
tasks with diverse object categories and layouts, and long-
horizon task goals; LIBERO-90 has extremely diverse object
categories, layouts and task goals.

Data. We compare with baselines on each suite separately.
All methods are trained on 10 action-labeled demonstration
trajectories and 50 action-free video demonstration trajectories
of the robot for each task, amounting to 500 videos for each
10-task suite. The demonstration dataset contains RGB images
from a third-person camera and a wrist camera, together with
gripper and joint states as observations. As each task is spec-
ified by a language instruction, we use the pre-trained BERT
network to obtain a task embedding [8]. Image resolution is
128 × 128 and the action space is 7-dimension, representing
the translation, rotation, and aperture of the end-effector.

Baselines. We compare with the following baselines:

1) BC denotes the vanilla behavioral cloning which trains a
policy exclusively using the limited action-labeled expert
demonstrations, without using the video dataset. It uses
a policy architecture identical to ATM except that the
particle trajectories are masked to be zero and it instead
takes language embedding as task specification.

2) R3M-finetune [31] uses a contrastive learning objec-
tive for learning representation that aligns video and
language with a combination of time contrastive losses,
L1 regularization, and language consistency losses. We
adopt the publicly released Ego4D pre-trained weights
and fine-tune the weights on our in-domain video dataset
To, to initialize the behavioral cloning policy’s visual
encoder. During policy training, we also further fine-
tune the R3M backbone with the behavioral cloning
loss. While this method captures priors from action-free
videos through representation learning, the visual repre-
sentation lacks knowledge about the transition dynamics
critical to decision-making.

3) VPT [3] first trains an inverse dynamics model from the
action-labeled trajectories Ta and then uses it to predict
pseudo action labels for the video dataset. With these
pseudo-labels, a policy is then trained with behavioral
cloning. This method requires the inverse dynamics
model to be robust to a wide distribution of input
observation, which can be difficult to learn from the
limited demonstrations.

4) UniPi [11, 21, 5] trains a text-conditioned video diffu-
sion model to generate a temporally fine-grained video
plan from an initial frame and a language instruction.
During policy learning, UniPi trains an inverse dynamics
model with action-labeled data. We base our implemen-
tation off of the UniPi implementation in Ko et al. [21].
While both UniPi and ATM leverage a policy condi-
tioned on future subgoals, a trajectory representation
decouples motion from other pixel-based information
and makes policy learning much easier. Please see the
Appendix where we perform additional comprehensive
comparisons of different variations of UniPi.



LIBERO-Spatial LIBERO-Object

LIBERO-Goal LIBERO-Long

(a) Visualization of the tasks in the LIBERO benchmark

(b) Comparison on the performance

pick up the black bowl in the drawer and place it on the plate pick up the butter and place it in the basket

put the bowl on top of the cabinet put the yellow and white mug in the microwave and close it

Fig. 4: We compare with state-of-the-art video pre-training methods on language-conditioned manipulation tasks in the
LIBERO benchmark [25]. (a) Visualization of the LIBERO tasks separated into four suites, focusing on different aspects
of the manipulation policies in spatial reasoning, object reasoning, task understanding, and performing long-horizon tasks. (b)
Quantitative comparisons on different suites. We additionally compare baselines with fast computation on a task suite containing
90 tasks (i.e. LIBERO-90). ATM outperforms the baselines in all tasks and excels in LIBERO-Goal and LIBERO-Long.

Results. We present the main results in Figure 4. We see that
by bridging the video data and policy learning with the struc-
tured representation of point trajectories, ATM (our method)
significantly surpasses various strong baselines in video pre-
training, achieving an average success rate of 63% compared
to the highest success rate of 37% by previous methods,
marking an improvement of over 80%. The comparison of
BC with ATM shows that learning from additional videos
provides useful information for policy learning. VPT performs
poorly as we empirically observed that the pseudo-action
labels predicted by VPT generally show large errors on the
video dataset. UniPi fails on more complex as video prediction
models are not physically grounded and often generate future
frames that are not physically feasible, such as cases where
robots disappear from the image. Please see our video for

failure cases of a video prediction model.

Real World Setup. We conduct a language-conditioned
manipulation experiment in the real world to further strengthen
our claim. As illustrated in Figure 5, we learn policies for a
6-DOF UR5 robot arm using human expert demonstrations
collected with the GELLO teleoperation system [49]. The
action space is joint position control and gripper state. The
observations include two RGB images from two RealSense
cameras. To compensate for the partial observation, we stack
the most recent two frames as the input of agents. We do not
feed proprioception states into agents because it is reported
that imitation policies tend to overfit them and ignore the
visual inputs, leading to worse online rollout performance [28,
24]. We collect a total of 50 action-labeled trajectories and
250 action-free demonstration videos (by simply removing



Task 1: Squeeze the mustard on the carrot
Task 2: Put the carrot into the basket
Task 3: Pour the cup into the bin
Task 4: Put the spoon into the bowl
Task 5: Put the tomato into the bowl

base 
camera

wrist 
camera

Policy rollout:
Put the tomato into the bowl

time

Fig. 5: Real robot experiments on a dining table setup consisting of five tasks. The left figure shows our real-world setup and
the tasks. The top right figure shows an example of the predicted particle trajectories and the policy execution, which closely
follows the predicted trajectories. From the quantitative results, we can see that ATM shows significant improvements over
state-of-the-art video pre-training baselines on average.

the actions from the collected action-labeled demonstrations).
From the quantitative results in Figure 5, we see consistent
trends that ATM outperforms BC and other video pre-training
baselines by a significant margin.

TABLE I: Average success rates of human-to-robot exper-
iments. ATM trained with human videos significantly out-
performs BC and ATM trained with only 10 robot videos,
demonstrating the cross-embodiment capability of ATM.

Method Teleoperation
demos

Human
videos fold cloth put tomato sweep toys

BC " % 0% 10% 30%
ATM " % 0% 0% 13%
ATM " " 63% 63% 60%

B. Human-to-robot and Robot-to-robot Transfer

By modeling the low-level any-point trajectories, ATM
enables learning from cross-embodiment videos of humans
or a different robot performing the task. This facilitates the
use of more scalable data sources. To verify this, we present
the results of learning from human videos in Fig. 6, with
the quantitative results presented in Table I, and the results
of cross-robot transfer in Fig. 7. We compare the following
methods: (1) Learning behavior cloning policies only on the
action-labeled data (2) ATM, using a track transformer trained
only on the limited action-labeled robot data, and (3) ATM,
using a track transformer trained on both the action-free human
and action-labeled robot data. Experiments show that training
the trajectory model on additional cross-embodiment videos
makes the trajectory prediction more robust and accurate,
significantly improving policy learning. On the other hand, as
the number of action-labeled trajectories is small, BC baselines

that only use action-labeled trajectories fail. Please refer to the
videos on our website for better visualization.

C. Ablation Analysis

We conduct a series of ablation experiments in simulation
to demonstrate the effect of our design choices. These include
the number of action-labeled trajectories needed for policy
learning, the effect of the trajectory prediction horizon, image
masking, and late track fusion.
Effect of the number of action-labeled trajectories. As
shown in Figure 8, we evaluate the performance of ATM
with various numbers of action-labeled demonstrations. By
default, we use 20% of the LIBERO dataset as action-labeled
demonstrations. We try reducing the training set further to
10% and 4%, which are equivalent to 5 and 2 demonstra-
tions per task, respectively. The results show a decline in
success rates with fewer demonstrations as expected. However,
ATM’s performance with only 4% training demonstrations is
comparable to BC w/ 20% on LIBERO-Object, Goal, and
Spatial. Surprisingly, on LIBERO-long, ATM outperforms BC
with 100% demonstration data, despite that we only pre-train
ATM on the same number of video data. This shows that
the future prediction guidance provides additional benefits for
performing long-horizon tasks apart from the ability to utilize
action-free videos.
Effect of track length. The track length of our pre-trained
track transformer is 16 and we utilize all 16 points of each
track by default as input for our policy. In this experiment,
we investigate the effect of track length of our policy input,
by training our policy with the predicted tracks truncated
into 4, 8, and 16 steps. The results in Figure 9 demonstrate
that longer tracks result in higher success rates in general,
except LIBERO-Object where track length = 8 yields the
best performance. In particular, reducing track length leads
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(a) Task: Fold the cloth and pull it to the right

step 0

(b) Task: Put the tomato into the pan and close the door (c) Task: Put the tomato into the pan and close the door

step 1 step 2

step 0 step 1 step 2

step 0 step 1 step 2

step 0 step 1 step 2

step 0 step 1 step 2

step 0 step 1 step 2

step 0 step 1 step 2

step 0 step 1 step 2

step 0 step 1 step 2

Fig. 6: Learning robotic skills from human videos for three tasks. We collect 100 videos of a human performing the tasks
directly and 10 teleoperation demonstration trajectories. Each row from the top to the bottom shows three snapshots from the
human videos, ATM trained without the human videos, and ATM trained with the human videos. By comparison, we can see
that human videos are critical in learning accurate trajectory prediction and enable the policy to successfully perform the task.

Franka videos

ATM – Franka onlyATM – UR only ATM - Franka ⟹ UR160 Franka Videos

UR5 policy learning UR5 Pick-Place Can

Fig. 7: Cross-morphology skill transfer for a pick-and-place task. Here, we collect 160 action-free videos of a Franka arm
and 10 action-labeled demonstrations from a UR arm, with the final goal of learning a UR policy. We compare a vanilla BC
baseline with ATM trained using types of data: using only the 10 UR videos, using only the 160 Franka videos, and using
both Franka and UR videos (Franka ⇒ UR). In the right plot, we observe that the additional cross-embodiment data led to
significantly better results. Surprisingly, even if the trajectory model is only trained using Franka videos, it exhibits much better
performance than the BC without the Franka videos.

to larger performance drops on LIBERO-Goal and LIBERO-
Long. These tasks require a comprehensive understanding of
the task goal. Longer tracks provide more detailed and specific
subgoals for each task, which is crucial for guiding the agent’s
movements and actions in subsequent stage. Conversely, for
LIBERO-Object, which emphasizes precision operations over
understanding of the task goal, a policy with a length of 16
underperforms slightly compared to the model with a length
of 8. We hypothesize that the longer tracks might interfere
with the learning of inverse dynamics due to noise. This also
supports our approach of employing tracks both as subgoal

conditions and in leveraging the nature of inverse dynamics.

Effect of image masking in track transformer. When train-
ing the track transformer, we randomly mask out patches in the
images and learn to reconstruct them as an auxiliary task. We
conduct an ablation study by removing the image masking loss
and comparing it against our standard configuration, where
we randomly mask out 50% of the image masks. In Table II,
the results reveal a slight decline in policy performance when
image masking is omitted, suggesting image masking can be
a useful auxiliary task.

Effect of early and late fusion in policy architecture.



TABLE II: Ablation study on image masking of track transformer, where “w/o image masking” represents that we do not mask
out image patches during track transformer training and “w/ image masking” means we randomly mask 50% patches. We can
see that mask image modeling in track transformer improves the policy performance.

Image Mask Ratio Spatial Object Goal Long

w/o image masking 69.17± 6.38 65.00± 3.89 74.33± 3.66 30.83± 11.43
w/ image masking (default) 68.50± 1.78 68.00± 6.18 77.83± 0.82 39.33± 15.80

TABLE III: Ablation study on the policy architecture. We explore the effect of the tracks fed into the policy in two positions:
transformer input (early fusion) and MLP head (late fusion), as illustrated in Figure 3.

early fusion late fusion Spatial Object Goal Long

" % 44.67± 1.84 56.67± 3.09 5.33± 0.24 22.33± 4.94

% " 65.50± 3.89 60.00± 1.47 72.83± 4.73 42.76± 14.62

" " 68.50± 1.78 68.00± 6.18 77.83± 0.82 39.33± 15.80
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Fig. 8: Success rate of our policy trained with 4%, 10%
and 20% action-labeled demos. Our policy trained with only
4% demos performs comparably to BC baseline with 20%
demos on LIBERO-Spatial, Object, and GOAL, and even
better on LIBERO-Spatial. When trained on 20% demos, our
performance approaches BC with all training data.

As shown in Figure 3, the predicted tracks are fed into
the policy both before and after the transformer architecture
within the policy, which we call early fusion and late fusion
respectively. We conduct ablation studies by removing these
two track inputs. The results are shown in Table III. We can
see that removing the late fusion leads to the most significant
performance drop; on LIBERO-Goal, w/ only early fusion
performs similarly to other baselines, whereas only late fusion
performs marginally worse than our full method. This suggests
a late fusion of the predicted tracks acts as useful subgoals
that help the policy better understand the tasks in a multi-task
learning setting. The subgoal prediction is more robust as it is

4 8 16
track length

10

20

30

40

50

60

70

80

Su
cc

es
s R

at
e 

(%
)

LIBERO-Spatial
LIBERO-Object
LIBERO-Goal
LIBERO-Long

Fig. 9: We plot the success rates of the policies learned with
predicted trajectories of different lengths. Generally, longer
trajectory length improves the performance, but the benefit
tends to plateau at 16.

trained on a larger video dataset.

VI. CONCLUSIONS

In this work, we present an any-point trajectory modeling
framework as video pre-training that effectively learns behav-
iors and dynamics from action-free video datasets. After pre-
training, by learning a track-guided policy, we demonstrate
significant improvements over prior state-of-the-art approaches
and show effective learning from out-of-distribution human
videos. We show that a particle-based representation is in-
terpretable, structured, and naturally incorporates physical
inductive biases such as object permanence. We hope our
works will open doors to more exciting directions in learning
from videos with structured representations.

One limitation is that our approach still relies on a set
of action-labeled demonstration trajectories for mapping to
actions, which limits the generalization of the learned policies.
Future works can consider learning the trajectory-following
policies using reinforcement learning so that no additional
demonstration data are needed. Another limitation of our
method is that the video dataset we use in this paper only
contains small domain gaps. Learning from in-the-wild video



dataset poses additional challenges such as multi-modal distri-
bution, diverse camera motions, and sub-optimal motions. We
leave these extensions for future work.

VII. ACKNOWLEDGEMENT

This work was supported in part by the BAIR Industrial
Consortium, and the InnoHK of the Government of the Hong
Kong Special Administrative Region via the Hong Kong
Centre for Logistics Robotics. This work is also supported
by the Ministry of Science and Technology of the People’s
Republic of China, the 2030 Innovation Megaprojects “Pro-
gram on New Generation Artificial Intelligence” (Grant No.
2021AAA0150000), and the National Key R&D Program of
China (2022ZD0161700). This work is done when Chuan Wen
is visiting UC Berkeley.

REFERENCES

[1] A Pedro Aguiar and Joao P Hespanha. Trajectory-
tracking and path-following of underactuated au-
tonomous vehicles with parametric modeling uncertainty.
IEEE transactions on automatic control, 52(8):1362–
1379, 2007.

[2] S Bahl, R Mendonca, L Chen, U Jain, and D Pathak.
Affordances from human videos 417 as a versatile rep-
resentation for robotics. In CVPR, 2023.

[3] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost
Huizinga, Jie Tang, Adrien Ecoffet, Brandon Houghton,
Raul Sampedro, and Jeff Clune. Video pretraining (vpt):
Learning to act by watching unlabeled online videos.
Advances in Neural Information Processing Systems, 35:
24639–24654, 2022.

[4] Homanga Bharadhwaj, Abhinav Gupta, Shubham Tul-
siani, and Vikash Kumar. Zero-shot robot manipu-
lation from passive human videos. arXiv preprint
arXiv:2302.02011, 2023.

[5] Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya,
Homer Walke, Chelsea Finn, Aviral Kumar, and Sergey
Levine. Zero-shot robotic manipulation with pre-
trained image-editing diffusion models. arXiv preprint
arXiv:2310.10639, 2023.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901,
2020.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
Jill Burstein, Christy Doran, and Thamar Solorio, edi-
tors, Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota, June 2019. Association for Computational
Linguistics.

[9] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adrià
Recasens, Lucas Smaira, Yusuf Aytar, João Carreira,
Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark
for tracking any point in a video, 2023.

[10] Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay,
Ankush Gupta, Yusuf Aytar, Joao Carreira, and Andrew
Zisserman. Tapir: Tracking any point with per-frame
initialization and temporal refinement, 2023.

[11] Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir
Nachum, Joshua B Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-
guided video generation. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[12] Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay
Jain, Xue Bin Peng, Ken Goldberg, Youngwoon Lee,
Danijar Hafner, and Pieter Abbeel. Video prediction
models as rewards for reinforcement learning. Neural
Information Processing Systems, 2023.

[13] Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu,
Chenxi Wang, Junbo Wang, Haoyi Zhu, and Cewu Lu.
Rh20t: A comprehensive robotic dataset for learning
diverse skills in one-shot. In Towards Generalist Robots:
Learning Paradigms for Scalable Skill Acquisition@
CoRL2023, 2023.

[14] Ankit Goyal, Arsalan Mousavian, Chris Paxton, Yu-Wei
Chao, Brian Okorn, Jia Deng, and Dieter Fox. Ifor:
Iterative flow minimization for robotic object rearrange-
ment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14787–
14797, 2022.

[15] Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu,
Montserrat Gonzalez Arenas, Kanishka Rao, Wenhao Yu,
Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al.
Rt-trajectory: Robotic task generalization via hindsight
trajectory sketches. arXiv preprint arXiv:2311.01977,
2023.

[16] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are
scalable vision learners. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 16000–16009, 2022.

[17] Zixuan Huang, Xingyu Lin, and David Held. Mesh-
based dynamics model with occlusion reasoning for cloth
manipulation. In Robotics: Science and Systems (RSS),
2022.

[18] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
tracker: It is better to track together. arXiv:2307.07635,
2023.

[19] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-
and-language transformer without convolution or region



supervision, 2021.
[20] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi

Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,
Piotr Dollar, and Ross Girshick. Segment anything. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 4015–4026, October
2023.

[21] Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua
Sun, and Joshua B Tenenbaum. Learning to Act
from Actionless Video through Dense Correspondences.
arXiv:2310.08576, 2023.

[22] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit
Agrawal, and Antonio Torralba. 3d neural scene rep-
resentations for visuomotor control. arXiv preprint
arXiv:2107.04004, 2021.

[23] Xingyu Lin, Yufei Wang, Zixuan Huang, and David
Held. Learning visible connectivity dynamics for cloth
smoothing. In Conference on Robot Learning, 2021.

[24] Xingyu Lin, John So, Sashwat Mahalingam, Fangchen
Liu, and Pieter Abbeel. Spawnnet: Learning generaliz-
able visuomotor skills from pre-trained networks. arXiv
preprint arXiv:2307.03567, 2023.

[25] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Yuke
Zhu, Peter Stone, et al. Libero: Benchmarking knowledge
transfer for lifelong robot learning. In Thirty-seventh
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023.

[26] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman,
Osbert Bastani, Vikash Kumar, and Amy Zhang. VIP:
Towards universal visual reward and representation via
value-implicit pre-training. In The Eleventh International
Conference on Learning Representations, 2023.

[27] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n.
What matters in learning from offline human demon-
strations for robot manipulation. arXiv preprint
arXiv:2108.03298, 2021.

[28] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n.
What matters in learning from offline human demon-
strations for robot manipulation. In arXiv preprint
arXiv:2108.03298, 2021.

[29] Lucas Manuelli, Yunzhu Li, Pete Florence, and Russ
Tedrake. Keypoints into the future: Self-supervised
correspondence in model-based reinforcement learning,
2020.

[30] Russell Mendonca, Shikhar Bahl, and Deepak Pathak.
Structured world models from human videos. In RSS,
2023.

[31] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. In Conference on
Robot Learning, pages 892–909. PMLR, 2023.

[32] Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex
Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky,
Anant Rai, Anikait Singh, Anthony Brohan, et al. Open
x-embodiment: Robotic learning datasets and rt-x mod-
els. arXiv preprint arXiv:2310.08864, 2023.

[33] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
Van de Panne. Deepmimic: Example-guided deep re-
inforcement learning of physics-based character skills.
ACM Transactions On Graphics (TOG), 37(4):1–14,
2018.

[34] Zengyi Qin, Kuan Fang, Yuke Zhu, Li Fei-Fei, and Silvio
Savarese. Keto: Learning keypoint representations for
tool manipulation. In 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 7278–
7285. IEEE, 2020.

[35] Adam Rashid, Satvik Sharma, Chung Min Kim, Justin
Kerr, Lawrence Yunliang Chen, Angjoo Kanazawa, and
Ken Goldberg. Language embedded radiance fields for
zero-shot task-oriented grasping. In Conference on Robot
Learning, pages 178–200. PMLR, 2023.

[36] Scott Reed, Konrad Zolna, Emilio Parisotto, Ser-
gio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay,
Jost Tobias Springenberg, et al. A generalist agent. arXiv
preprint arXiv:2205.06175, 2022.

[37] Karl Schmeckpeper, Annie Xie, Oleh Rybkin, Stephen
Tian, Kostas Daniilidis, Sergey Levine, and Chelsea
Finn. Learning predictive models from observation and
interaction, 2019.

[38] Daniel Seita, Yufei Wang, Sarthak J Shetty, Edward Yao
Li, Zackory Erickson, and David Held. Toolflownet:
Robotic manipulation with tools via predicting tool flow
from point clouds. In Conference on Robot Learning,
pages 1038–1049. PMLR, 2023.

[39] Younggyo Seo, Kimin Lee, Stephen James, and Pieter
Abbeel. Reinforcement learning with action-free pre-
training from videos, 2022.

[40] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jas-
mine Hsu, Eric Jang, Stefan Schaal, Sergey Levine,
and Google Brain. Time-contrastive networks: Self-
supervised learning from video. In 2018 IEEE inter-
national conference on robotics and automation (ICRA),
pages 1134–1141. IEEE, 2018.

[41] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jas-
mine Hsu, Eric Jang, Stefan Schaal, Sergey Levine,
and Google Brain. Time-contrastive networks: Self-
supervised learning from video. In 2018 IEEE inter-
national conference on robotics and automation (ICRA),
pages 1134–1141. IEEE, 2018.

[42] Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang,
and Jeannette Bohg. Concept2robot: Learning manipu-
lation concepts from instructions and human demonstra-
tions. The International Journal of Robotics Research,
40(12-14):1419–1434, 2021.

[43] Kenneth Shaw, Shikhar Bahl, and Deepak Pathak.
Videodex: Learning dexterity from internet videos. In



Conference on Robot Learning, pages 654–665. PMLR,
2023.

[44] Faraz Torabi, Garrett Warnell, and Peter Stone. Behav-
ioral cloning from observation, 2018.

[45] Mel Vecerik, Carl Doersch, Yi Yang, Todor Davchev,
Yusuf Aytar, Guangyao Zhou, Raia Hadsell, Lourdes
Agapito, and Jon Scholz. Robotap: Tracking arbitrary
points for few-shot visual imitation. arXiv, 2023.

[46] Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan
Vuong, Chongyi Zheng, Philippe Hansen-Estruch, An-
dre Wang He, Vivek Myers, Moo Jin Kim, Max Du,
et al. Bridgedata v2: A dataset for robot learning at
scale. In Conference on Robot Learning, pages 1723–
1736. PMLR, 2023.

[47] Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi
Li, Bharath Hariharan, Aleksander Holynski, and Noah
Snavely. Tracking everything everywhere all at once,
2023.

[48] Chuan Wen, Jianing Qian, Jierui Lin, Jiaye Teng, Dinesh
Jayaraman, and Yang Gao. Fighting fire with fire:
Avoiding dnn shortcuts through priming. In International
Conference on Machine Learning, pages 23723–23750.
PMLR, 2022.

[49] Philipp Wu, Yide Shentu, Zhongke Yi, Xingyu Lin, and
Pieter Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators. arXiv
preprint arXiv:2309.13037, 2023.

[50] Haoyu Xiong, Quanzhou Li, Yun-Chun Chen, Homanga
Bharadhwaj, Samarth Sinha, and Animesh Garg. Learn-
ing by watching: Physical imitation of manipulation
skills from human videos. In 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 7827–7834. IEEE, 2021.

[51] Mengjiao Yang, Yilun Du, Kamyar Ghasemipour,
Jonathan Tompson, Dale Schuurmans, and Pieter Abbeel.
Learning interactive real-world simulators. arXiv preprint
arXiv:2310.06114, 2023.

[52] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee,
Xi Chen, Ken Goldberg, and Pieter Abbeel. Deep
imitation learning for complex manipulation tasks from
virtual reality teleoperation. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages
5628–5635. IEEE, 2018.



APPENDIX A
ADDITIONAL EXPERIMENTAL RESULTS

A. Simulation Experiments

Numerical results. We report the numeric values for the
success rates on LIBERO benchmark in Table V. All methods
use 20% of the demonstration trajectories except the oracle.
See Sec. A-B for details about the comparisons on UniPi and
UniPi-Replan.
Attention map visualization. To demonstrate how tracks
guide the policy, we visualize the attention maps between the
spatial CLS token and RGB tokens in the spatial transformer
of BC and our method. Figure 10 demonstrates that our
method effectively focuses on the relevant spatial regions, as
specified by the textual instructions. Specifically, it attends
to the cream cheese, bowl, and wine bottle in the respective
example tasks, while BC is usually distracted by the irrelevant
regions, highlighting the superior capability of the tracks as
better task prompts.

B. Discussions on the UniPi Baselines

UniPi [11] proposes to train a language-conditioned video
diffusion model fθ during video pre-training. During policy
learning, given the initial image observation o0 and the lan-
guage l, UniPi first generates all future frames õ1, . . . õT−1 =
fθ(o0, l) and then learns an inverse dynamics model that pre-
dicts the action at each time step at = π(ot, õt+1). UniPi then
executes the actions open-loop. However, training a diffusion
model to predict the full video can be computation intensive,
As such, the UniPi implementation in our paper follows the
one in Ko et al. [21], where we predict N = 7 future frames
as the sub-goals for the policy, denoted as õ1, . . . õN . During
training, we evenly sample N frames in an episode for training
the video prediction model. During policy learning, we train a
goal-conditioned policy π(at, done|ot, õi), where i ∈ 1, . . . N
is the image sub-goal and t denotes the current timestep. The
policy additionally predicts a done flag to determine when it
should switch from the current sub-goal õi to the next sub-
goal õi+1. ATM’s superiority over UniPi can be attributed
to two reasons. First, ATM uses a more structured sub-goal
representation of point trajectories. Second, ATM performs
closed-loop inference, proposing a new sub-goal at each time
step, while UniPi’s video diffusion process is too slow to be
referenced at every time step.

TABLE IV: Computation cost for performing a single task
consisting of 600 time steps for different methods. ATM
performs trajectory generation at each time step while being
computationally efficient. UniPi performs an open-loop future
goal generation once at the beginning using a video diffusion
model. UniPi-Replan generates image sub-goals at more fre-
quent time steps and is the slowest.

Method ATM UniPi UniPi-Replan
Computation (TFLOPS) 1.56 39.29 2946.75

To train the UniPi policy, we sample oi from a future frame
ot where t ∈ [t, t + tmax]. We choose tmax for each task
suite (tmax = 16 for LIBERO-Object and LIBERO-Spatial,
tmax = 50 for LIBERO-Goal and LIBERO-Long). To mitigate
dataset imbalance when learning the done flag, we sample oi as
the next frame 10% of the time. We perform MSE regression
on both the action at and done.

In order to decouple the two advantages of ATM over
UniPi additionally compare with a UniPi variation where
we train the video prediction model to predict a fixed time
step into the future õt+H = fθ(ot) for every H steps of
policy execution, where H = 8. As this variation replans the
sub-goal more frequently, we call this method UniPi-Replan,
similar to the implementation in [5]. The results are shown in
Table V. Surprisingly, we found that this variation performs
even worse than UniPi. We thus draw the conclusion
that a structured sub-goal representation can be much
more effective than an image sub-goal. The reason is that
predicting an image goal at a fixed future time step can be
a difficult objective for the video prediction model, leading
to inconsistent subgoals. Please refer to the failure videos of
various baselines on our website. Additionally, this method
requires heavy computation. A comparison of the computation
needed is shown in Table IV. Due to the computation cost, we
only evaluate UniPi-Replan on LIBERO-Object and LIBERO-
Goal and report the average success across 10 trials on one
policy training random seed.

C. Human-to-robot Transfer Details

To demonstrate the potential of ATM to leverage out-of-
domain videos, we design human-to-robot transfer tasks in
three different settings: 1) deformable object: fold the cloth
and pull it to the right, 2) long horizon: put the tomato into
the pan and close the cabinet door, and 3) tool using: use the
broom to sweep the toys into the dustpan and put it in front
of the dustpan. We collect 10 robot teleportation trajectories
(action-labeled) and 100 human manipulation videos (action-
free). We compare three methods: 1) behavioral cloning only
with 10 action-labeled robot demos, 2) ATM, training track
transformer with only 10 robot demos, and 3) ATM, training
a track transformer with both action-free human and action-
labeled robot data. For each task, we train each method with
three different random seeds, evaluate them in the real world
10 times, and report the average success rate in Table I.
Human-to-Robot visualization. The detailed video visualiza-
tions of human-to-robot skill transfer are shown in Figure 13.
Due to limited training samples, the track transformer trained
with only 10 robot videos fails to predict the future point
trajectories, leading to low success rates. In contrast, the
trajectory model trained with human videos generates high-
quality tracks in each frame, guiding the agent to successfully
complete the task with only 10 action-labeled trajectories. This
indicates our any-point trajectory modeling enables to transfer
the motion prior from cross-embodiment videos to robot skills,
which significantly improves policy learning.
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Fig. 10: The attention maps of BC and Ours in the spatial transformer. We extract the attention weights between spatial CLS
tokens and RGB tokens, highlighting the policy’s focus on specific spatial regions during decision-making. The heatmaps reveal
our policy’s targeted attention on task-relevant areas, in contrast to BC’s tendency to focus on irrelevant backgrounds. This
underscores the effectiveness of input tracks in the spatial transformer as good task prompts, guiding the CLS token to attend
to appropriate areas.

TABLE V: Average success rate on LIBERO benchmark. Our method performs consistently better than all the baselines across
all suites. UniPi-Replan is only evaluated for a single seed due to the computation cost.

Method Libero-Spatial Libero-Object Libero-Goal Libero-Long Libero-90

BC-Full-Trainset (Oracle) 71.83± 3.70 71.00± 7.97 76.33± 1.31 24.17± 2.59 -

BC 39.00± 8.20 51.83± 13.54 42.50± 4.95 16.67± 3.66 29.78± 1.14
R3M-finetune [31] 49.17± 3.79 52.83± 2.25 5.33± 1.43 9.17± 2.66 9.59± 0.27

VPT [3] 37.83± 4.29 19.50± 0.82 3.33± 2.36 3.83± 1.65 -
UniPi [11, 21] 69.17± 3.75 59.83± 3.01 11.83± 2.02 5.83± 2.08 -

UniPi-Replan [5] - 31.00 3.00 - -
ATM (Ours) 68.50± 1.78 68.00± 6.18 77.83± 0.82 39.33± 15.80 48.41± 2.09

TABLE VI: Hyperparameters of track transformer training.

Hyperparameters Track Transformer

epoch 100
batch size 1024
optimizer AdamW

learning rate 1e-4
weight decay 1e-4
lr scheduler Cosine
lr warm up 5
clip grad 10

point sampling variance filtering
number of points 32

track length 16
track patch size 4

image mask ratio 0.5
augmentation ColorJitter,RandomShift

TABLE VII: Hyperparameters of policy training.

Hyperparameters Policy

epoch 100
batch size 512
optimizer AdamW

learning rate 5e-4
weight decay 1e-4
lr scheduler Cosine
lr warm up 0
clip grad 100

point sampling grid
number of points 32

track length 16
frame stack 10

augmentation ColorJitter,RandomShift

APPENDIX B
IMPLEMENTATION DETAILS

A. Policy Architecture

We include a more detailed visual of the ViT-T [25, 19]
policy used in our experiments in Figure 11. The input to our
policy is a set of temporally stacked images across multiple
views ot ∈ RV×T×C×H×W , and proprioception pt ∈ RDp .
To process these inputs, ViT-T consists of three stages:

Spatial Encoding: We encode all modalities at each timestep.
We first leverage the frozen track transformer to propose

a set of tracks for all V frames in ot. We then project
each modality with modality-specific encoders into a shared
embedding space RD. Each modality’s tokens are embedded
using a shared learned modality token, and modality-specific
positional embeddings. We then concatenate tokens across all
modalities and views with a learned spatial CLS token, and
perform self-attention on the sequence. We extract the spatial
CLS token as the representation.

Temporal Decoding: We process the encoded modalities
across timesteps into actions. We first project the
proprioception at each timestep into the same shared



base
view

wrist
view

predicted
tracks

Spatial Transformer

Temporal Transformer

timetime timespatial 
state

joint, gripper 
state

action
cls

MLP Head

𝑎!

late 
fusion

early fusion

Fig. 11: To summarize spatial information, we perform self-
attention on a sequence consisting of all views’ track and
image patches and a CLS token. To integrate information
across time, we perform casual self-attention between spatial
CLS token, proprioception, and an action CLS token per
timestep. To regress actions, we concatenate each timestep’s
action CLS token and proposed tracks.

1. random tracking 2. filter & retrackvideo

“pick up the milk and place it in the basket”

Fig. 12: Given a video (left), we query 1000 randomly sampled
points using an off-the-shelf TAP model (middle), where
each colored dot represents the starting position of a track.
We then filter the tracks using a heuristic of their position
displacement across the video and re-sample around these
points (right). We can see that extracted tracks are concentrated
around informative objects, such as the robot’s gripper and
manipulation targets.

embedding space RD. We then interleave the encoded
proprioception, the spatial CLS token, and a learned action
CLS token across timesteps into a sequence, before performing
causally-masked self attention between the sequence.

Action Head: We treat each timestep’s output independently
and parameterize actions using an MLP. For each timestep,
we take the action CLS token, and fuse the CLS token with
the reconstructed tracks of the current timestep.

B. Efficient Training with Point Filtering

We adopt a heuristic to filter out the static points in the
background and then utilize an off-the-shelf tracking model to
generate the corresponding tracks of the large-motion points.

The visualization of the sampled points before and after the
filtering process is shown in Figure 12.

C. Training Details

We list the training hyperparameters for the track trans-
former and track-guided policy in Table VI and VII, which are
fixed for all experiments on LIBERO benchmark. We train all
models on 4 A100 GPUs with DeepSpeed strategy.

We train the track transformer using the ground truth tracks
generated by CoTracker [18] and save the checkpoint with
the lowest validation loss as our final model to apply for
policy learning. We do not incorporate frame stacking for track
transformer to avoid causal confusion [48].

We train policies using the expert demonstrations provided
by LIBERO, which is collected by human experts through
teleoperation with 3Dconnexion Spacemouse [25]. Since the
validation loss in behavioral cloning is not always reliable,
we save the checkpoint of the last epoch for online rollout
evaluation.
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Fig. 13: The visualizations of human demos and rollout videos of ATM policies trained with and without human data. We can
see that ATM is able to take advantage of out-of-domain videos, i.e., human videos, to generate more precise tracks, resulting
in better policy performance.
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